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By regarding the amplitudes of a set of orthogonal modes as the co-ordinates in an 
infinite-dimensional phase space, the probability distribution for an ensemble of 
randomly forced two-dimensional viscous flows is determined as the solution of 
the continuity equation for the phase flow. For a special, but infinite, class of 
types of random forcing, the exact equilibrium probability distribution can be 
found analytically from the Navier-Stokes equations. In  these cases, the proba- 
bility distributionis the product of exponential functions of the integral invariants 
of unforced inviscid flow. 

1. Introduction 
During the past few years, increasing attention and effort have been directed 

towards the study of two-dimensional turbulent flows, not because they are 
realizable in the laboratory or strictly observable physically, but because they 
are simple and plausible models of the quasi-horizontal turbulent flow of the 
stably stratified atmospheres of the earth and other fairly rapidly rotating 
planets. 

It has long been recognized that there is a fundamental distinction between 
two- and three-dimensional turbulence. In  three-dimensional motion, the total 
kinetic energy is the only known integral invariant for unforced inviscid fl0w.t 
In  two-dimensional inviscid flow, however, there are two basic invariants, 
namely, the total kinetic energy and variance of vorticity (enstrophy). As 
Fjortoft (1953) pointed out, the latter fact implies that the kinetic energy of two- 
dimensional motion must be transferred simultaneously from both large to small 
and small to large scales by nonlinear interactions between different scales of 
motion, whereas there is a unidirectional nonlinear cascade of energy from large to 
small scales of motion in three-dimensional flow. 

This peculiarity of two-dimensional flow has lead Batchelor (1969), Kraichnan 
(1967) and Leith (1968) to postulate the existence of two distinct 'inertial' sub- 
ranges of turbulence, above and below some energy-receiving part of the spec- 
trum. The small-scale subrange is characterized by negligible turbulent transfer 
of energy but strong enstrophy transfer to small scales; the large-scale subrange 

t Excepting the so-called ' helicity ' integral, which vanishes identically in isotropic 
turbulence. 
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is one in which turbulent enstrophy transfer is negligible, but the nonlinear 
transfer of energy is directed from smaller to larger scales of motion. 

The inferred kinetic energy spectra in the two subranges are also distinctly 
different. According to dimensional arguments analogous to those of Kolmogoroff 
(1941) and Batchelor (1946) for homogeneous isotropic turbulence in three 
dimensions, the energy density in the large-scale inertial subrange (above the 
energy-receiving scales) might be expected to vary as the minus five-thirds 
power of scalar wavenumber, whereas it should vary as the minus three power of 
wavenumber in the small-scale inertial subrange. These conjectures have been 
confirmed to a remarkable degree by the results of numerical experiments 
carried out by Lilly (1969), particularly for the small-scale inertial subrange, and 
by the more recent numerical calculations of Fox & Orszag (1972). 

It has become apparent, however, that the results of approximate numerical in- 
tegrations of the Navier-Stokes equations (whether by Eulerian finite-difference 
methods or by truncated orthogonal representations) leave some doubt as to 
the validity of conclusions drawn from numerically computed statistics of the 
small-scale features of turbulent flows. To a considerable extent, this uncertainty 
arises from the lack of any exact standard against which one can judge the 
accuracy of approximate numerical calculations that may be almost equally 
inexact over a large range of mesh sizes or numbers of representative orthogonal 
modes. 

The purpose of this paper, briefly, is to show that some exact statistics of 
randomly forced, two-dimensional viscous flows can be derived analytically from 
the Navier-Stokes equations. Although these solutions certainly do not comprise 
a general theory of two-dimensional turbulence, they do provide a statistical 
standard with which approximate numerical results may be compared. 

2. The physical and mathematical problem 
We shall be concerned with the two-dimensional flow of a homogeneous and 

incompressible, but viscous fluid whose motion is forced by a random distribution 
of sources and sinks of vorticity. In this case, the Navier-Stokes equations reduce 
to the vorticity equation: 

in which x and y are Cartesian co-ordinates in the plane of motion, $ is the stream 
function, V and V2 are the vector gradient and Laplacian operators in the plane 
of motion, n is the unit vector normal to  that plane, v is the coefficient of kine- 
matic viscosity and F(x ,  y, t )  is a randomly varying function whose properties will 
be specified later. 

From the standpoint of treating the statistics of an ensemble of solutions of (1) )  
it is convenient to  represent the stream function $ as a linear combination of 
orthogonal functions, i.e. as 

m 

$(x, Y, t )  = x A,(t)$i(G Y L  (2) 
i=l 
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where the eigenfunctions $i are solutions of 

subject to the condition that the $% vanish on the boundaries of a finite but large 
rectangular subdomain of a flow that is periodic in both x and y in the infinite 
domain. Equation (3) )  together with Gauss) theorem, implies that the 4, are 
orthogonal, since they vanish on the boundaries. The ai are clearly discrete 
eigenvalues. Thus, we can avoid summation over many indices by requiring 
that there be a unique q5i corresponding to each ai. This condition is fulfilled, for 
example, if the length L and width W of the rectangular subdomain is such that 
L2/ W 2  is an irrational number, even if that ratio is virtually indistinguishable 
from unity. Finally, since (3) is homogeneous, we may normalize the $i so that 

V2$$ = - 4 9i (3)  

where A is the area of the subdomain and the integral is taken over that area. 
The evolution equations for the amplitude factors A,(t) are derived by sub- 

stituting the general representation given by (2) into the vorticity equation ( I), 
noting that the product of summations over a single index may be written as a 
double summation of products over two indices: 

Thus, on multiplying the equation above by a particular eigenfunction q5k, 
integrating over the entire subdomain A and introducing the conditions that the 

are orthogonal and normalized, we have 

where 

and 

i r  

Several distinctive 
coefficients Pgik follow 

and important properties of the nonlinear interaction 
directly from (6) and the boundary conditions on the $$. 

By integrating by parts, one can readily verify that P i j k  vanishes if any two 
indices are equal, is invariant under cyclic permutation of indices and reverses 
sign under non-cyclic permutation of indices. 

To display the symmetries and asymmetries of (5) more clearly, it  is useful to 
consider a new set of dependent variables, namely, x k  = OIkAk. Under this 
transformation, (5) becomes 

8, = N k -  VaExk + f k ( t ) ,  (7) 

in which 

and 8, = axk/&. It will be noted that Xi is just the kinetic energy per unit mass 
contained in the kth mode. 
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3. Statistical formulation of the problem 
Introducing the simplest ideas of statistical mechanics, we now regard the X, 

as the co-ordinatesof a point in aninfinite-dimensional phase space, corresponding 
to the state of one particular ‘realization’ of the system at one moment in time. 
The time evolution of a single realization is then described by the trajectory of a 
single imaginary point, or ‘particle’, travelling through phase space in accor- 
dance with the parametric equations of motion given by (7) .  

Let us next suppose that a very large ensemble of realizations, large enough for 
the density of ‘particles ’ in the phase space to be quasi-continuous, were initiated 
at  the same time. In  general, of course, the density of such ‘particles ’ varies with 
time and position in the phase space. No new realizations, however, are created 
after the initial time, so that the number of ‘particles’ within a volume element 

dX,  must increase or decrease at  a rate equal to the rate of net transport of 

particles into or out of the volume element. Thus, since X, is the component of 
velocity in the X, direction in the phase space, the continuity equation for 
conservation of ‘particles’ is 

m 

k = l  

m a  %+ c - ( p S J  = 0, 
at ,- 1 ax, (9) 

where p is the density of ‘particles’ or realizations in the phase space. The func- 
tion p is usually called the probability distribution, simply because the probability 
that any one of an ensemble of realizations (or ‘particles’) lies within a volume 

element 
m 

d X ,  in the neighbourhood of X, is just 
k=l 

m 

P(Xk,t)  rr ax,. 
x.=l 

Thus, if p(Xk , t )  is known, this relation enables us to calculate the ensemble 
average of any function of the X,. In  particular, 

m jm ...y p(X,,t) dX,c = 1, 
-m - m  k= 1 

Substituting for S, from (7) into (9), we see that 

It is worth noting that this equation has only one dependent variable, namely, 
the probability distribution p, and that it is linear. 

Let us next consider the form of p fk ,  which is to be interpreted as the net rate of 
transport of ‘particles’ in the X, direction, due solely to the displacements of a 
very large ensemble of ‘particles’ moving with randomly varying speeds f, in the 
X ,  direction. It is intuitively evident (and is easily shown) that the transport of 
‘particles ’ by random motions is a diffusive process, such that in the ensemble 
average 

Pfk = -Pul,WX,, 
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where the coefficient of diffusion p, is proportional to 

715 

The pointed brackets denote the ensemble average, and @,(T) is the normalized 
autocorrelation function forfk(t). The constant to is large compared with the time 
scale of random fluctuations offk(t), but is small compared with the time scale of 
fluctuations of p. Thus to may be considered as infinite. 

An additional simplification of (10) may be made by noting that 

aN,/ax, = 0, 

simply because Pi,, = Pkjk = 0. Thus (10) reduces to 

To make ( I  1) more symmetrical in its independent variables, we next carry out a 
simple linear transformation : 

whence (11) takes the form 
x, = PtZ,, 

where, in view of (8), 

Thus far, we have suffered no loss of generality. 

4. Some special equilibrium solutions 

equilibrium solutions of the form 
It will next be shown that, for certain special types of random forcing, ( 12) has 

in which C is a constant, determined by the condition that the integral ofp, taken 
over the entire phase space is unity. We &st note that 

apo/aZ, = - vp,a$Z,. 

Thus, the third and fourth terms of (12) exactly cancel. Moreover, since po is 
independent oft, the first term of (12) vanishes. Accordingly, the condition that po 
be a solution of (12) is 

This condition is satisfied if there are constants a and b such that 

a$/p, = a + ba$ 
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regardless of the independent variables Zk,  simply because the triple summation 
exhibited above vanishes identically, in virtue of the fact that the nonlinear 
interaction coefficients Pijk reverse sign under non-cyclic permutation of indices. 
To show this, we note that the triple summation may be reordered as 

The first of these summations vanishes because the summand reverses sign with 
exchange of i and k ;  the second vanishes since the summand reverses sign with 
exchange of j and k .  

With the restrictions stated in (14), the function given by (13) is an exact 
equilibrium solution of (12). It is not difficult to show that this solution is also 
stable and unique, by making use of the properties of (12), the condition of 
integrability and the fact that a diffusively controlled probability distribution 
cannot have singularities. 

5. The partition of energy among randomly forced modes 
The equilibrium spectrum of kinetic energy for a two-dimensional viscous flow, 

in which the statistical properties of random sources of vorticity are prescribed by 
(14), is easily calculated from ( 13). With the restriction (la), we may write the 
equilibrium probability distribution as t 

Thus, by definition, the ensemble average of the kinetic energyin the pth mode is 

- m  k = l  

or, since 

It should be pointed out that b must be positive; a may be negative, however, 
provided that lal4/b* is less than the smallest eigenvalue. 

t Written in this form, the equilibrium probability distribution clearly depends only 
on tho additive integral invariants of unforced inviscid two-dimensional flow, namely, 
total energy and enstrophy. 
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6. Conclusions and comment 
The reader will undoubtedly have perceived that the solutions given by (15) 

are highly special and that, from the standpoint of a general theory of turbulence, 
they are not very interesting. This arises from the fact that the specification of 
random forcing is such that there is no net nonlinear transfer of energy into or out 
of any particular mode, in the ensemble average. That is not to say, however, 
that there is no nonlinear transfer between modes in any particular realization. 
For this reason, and because (15) yields exact statistical results, the solutions 
given here may prove a useful standard in judging the accuracy of results based 
on an ensemble of approximate numerical solutions. 

The National Center for Atmospheric Research is sponsored by the National 
Science Foundation. 
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